Foundation Check In - 3.01 Powers and roots

Do not use a calculator.

1. Write the reciprocal of 3^{2} in index notation.
2. Using the laws of indices, simplify $4^{-3} \times 4^{5}$ and write your answer in index notation.
3. Using the laws of indices, simplify $8^{3} \div 8^{5}$ and write your answer in index notation.
4. Calculate 5^{-2}, giving your answer as a fraction.
5. Calculate $2^{-3} \times \sqrt{64}$.
6. Explain which is greater, 2^{-2} or 4^{-2}.
7. Matthew is asked to simplify $\left(4^{-2} \times 4^{3} \times 4^{5}\right)^{2}$, giving his answer in index notation. His answer is 4^{12}. Is he right? Give a reason for your answer.
8. Explain why $10^{3} \times 3^{0}$ is not equal to 30^{3}.
9. When you add the cube of Alfie's age to Hannah's age, the total is 79 . When you add the ages of Alfie and Hannah together, the total is 19. How old are Alfie and Hannah?
10. Jenny wants to tile the wall above her bath which measures 2 m high by 2 m wide. The square tiles that she has chosen will each cover an area of $400 \mathrm{~cm}^{2}$. How many tiles will she need to complete one row of the wall?

Extension

You may use a calculator for the extension task.

Find different pairs of values for x and y which will satisfy the equation $x^{y}=64$.

Answers

1. 3^{-2}
2. 4^{2}
3. 8^{-2}
4. $\frac{1}{25}$
5. 1 or -1
6. 2^{-2} as $\frac{1}{4}$ is bigger than $\frac{1}{16}$.
7. Yes he is correct using the laws of indices, $-2+3+5=6$ and then $6 \times 2=12$.
8. The answer is not calculated by multiplying the bases and adding the indices or different bases so cannot apply the laws of indices.
The answer is $1000 \times 1=1000=10^{3}$.
9. Alfie is 4 and Hannah is 15 .
10. Dimension of one tile $=\sqrt{400}=20 \mathrm{~cm}$ $200 \mathrm{~cm} \div 20 \mathrm{~cm}=10$ tiles per row

Extension

Possible answers include:

$$
\begin{array}{ll}
x=2 \text { and } y=6 & x=4 \text { and } y=3 \\
x=8 \text { and } y=2 & x=64 \text { and } y=1 \\
x=16 \text { and } y=\frac{3}{2} & x=4096 \text { and } y=\frac{1}{2} \\
x=262144 \text { and } y=\frac{1}{3} & x=16777216 \text { and } y=\frac{1}{4}
\end{array}
$$

We'd like to know your view on the resources we produce. By clicking on 'Like' or 'Dislike' you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.
If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here: www.ocr.org.uk/expression-of-interest

[^0]| Assessment
 Objective | Qu. | Topic | \mathbf{R} | \mathbf{A} | \mathbf{G} |
| :---: | :---: | :--- | :---: | :---: | :---: |
| AO1 | 1 | Use negative integer indices to represent reciprocals | | | |
| AO1 | 2 | Using the laws of indices, know and apply $a^{m} \times a^{n}=a^{m+n}$ | | | |
| AO1 | 3 | Using the laws of indices, know and apply $a^{m} \div a^{n}=a^{m-n}$ | | | |
| AO1 | 4 | Calculate with negative integer powers | | | |
| AO1 | 5 | Calculate with negative integer powers and roots | | | |
| AO2 | 6 | Understand the values of negative integer indices | | | |
| AO2 | 7 | Explain how the laws of indices can be applied to simplify
 expressions with negative integer indices and brackets | | | |
| AO2 | 8 | Understand when the laws of indices cannot be applied to
 simplify expressions with integer indices | | | |
| AO3 | 9 | Solve a worded problem using calculations of integer
 indices | | | |
| AO3 | 10 | Solve a worded problem using calculations with roots | | | |

Assessment Objective	Qu.	Topic	\mathbf{R}	\mathbf{A}	\mathbf{G}
AO1	1	Use negative integer indices to represent reciprocals			
AO1	2	Using the laws of indices, know and apply $a^{m} \times a^{n}=a^{m+n}$			
AO1	3	Using the laws of indices, know and apply $a^{m} \div a^{n}=a^{m-n}$			
AO1	4	Calculate with negative integer powers			
AO1	5	Calculate with negative integer powers and roots			
AO2	6	Understand the values of negative integer indices			
AO2	7	Explain how the laws of indices can be applied to simplify expressions with negative integer indices and brackets			
AO2	8	Understand when the laws of indices cannot be applied to simplify expressions with integer indices			
AO3	9	Solve a worded problem using calculations of integer indices			
AO3	10	Solve a worded problem using calculations with roots			

Assessment Objective	Qu.	Topic	\mathbf{R}	\mathbf{A}	\mathbf{G}
AO1	1	Use negative integer indices to represent reciprocals			
AO1	2	Using the laws of indices, know and apply $a^{m} \times a^{n}=a^{m+n}$			
AO1	3	Using the laws of indices, know and apply $a^{m} \div a^{n}=a^{m-n}$			
AO1	4	Calculate with negative integer powers			
AO1	5	Calculate with negative integer powers and roots			
AO 2	6	Understand the values of negative integer indices			
AO 2	7	Explain how the laws of indices can be applied to simplify expressions with negative integer indices and brackets			
AO 2	8	Understand when the laws of indices cannot be applied to simplify expressions with integer indices			
AO 3	9	Solve a worded problem using calculations of integer indices			
AO 3	10	Solve a worded problem using calculations with roots			

Assessment Objective	Qu.	Topic	\mathbf{R}	\mathbf{A}	\mathbf{G}
AO1	1	Use negative integer indices to represent reciprocals			
AO1	2	Using the laws of indices, know and apply $a^{m} \times a^{n}=a^{m+n}$			
AO1	3	Using the laws of indices, know and apply $a^{m} \div a^{n}=a^{m-n}$			
AO1	4	Calculate with negative integer powers			
AO1	5	Calculate with negative integer powers and roots			
AO2	6	Understand the values of negative integer indices			
AO2	7	Explain how the laws of indices can be applied to simplify expressions with negative integer indices and brackets			
AO2	8	Understand when the laws of indices cannot be applied to simplify expressions with integer indices			
AO 3	9	Solve a worded problem using calculations of integer indices			
AO 3	10	Solve a worded problem using calculations with roots			

[^0]: OCR Resources: the small print
 OCR's resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board, and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources.
 © OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work. OCR acknowledges the use of the following content: n / a
 Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

